首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   9篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   11篇
  2011年   5篇
  2010年   9篇
  2009年   2篇
  2008年   16篇
  2007年   11篇
  2006年   13篇
  2005年   10篇
  2004年   14篇
  2003年   6篇
  2002年   7篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有160条查询结果,搜索用时 328 毫秒
81.
Dehydroepiandrosterone (DHEA), a precursor of sex steroid hormones, is synthesized by cholesterol side-chain cleavage cytochrome P-450 and 17alpha-hydroxylase cytochrome P-450 mainly from cholesterol and converted to testosterone and estrogen by 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17beta-HSD, and aromatase cytochrome P-450. Although sex steroid hormones have important effects in the protection of articular cartilage, it is unclear whether articular cartilage has a local steroidogenic enzymatic machinery capable of metabolizing DHEA. This study was aimed to clarify whether steroidogenesis-related enzymes are expressed in articular chondrocytes, whether expression levels are changed by DHEA, and whether articular chondrocytes are capable of synthesizing sex steroid hormones from DHEA. Articular chondrocytes isolated from adult rats were cultured with DHEA for 3 days. All of the mRNA expressions of steroidogenesis-related enzymes were detected in cultured articular chondrocytes of rats, but the mRNA expression levels of testosterone and estradiol in cultured media increased after the addition of DHEA. These findings provided the first evidence that articular chondrocytes expressed steroidogenesis-related enzyme genes and that they are capable of locally synthesizing sex steroid hormones locally from DHEA.  相似文献   
82.
Although cell therapy of the failing heart by intramyocardial injections of myoblasts to results in regenerative benefit, it has also been associated with undesired and prospectively fatal arrhythmias. We hypothesized that intramyocardial injections of myoblasts could enhance inflammatory reactivity and facilitate electrical cardiac abnormalities that can be reduced by epicardial myoblast sheet delivery. In a rat model of ischemic heart failure, myoblast therapy either by intramyocardial injections or epicardial cell sheets was given 2 weeks after occlusion of the coronary artery. Ventricular premature contractions (VPCs) were assessed, using an implanted three-lead electrocardiograph at 1, 7, and 14 days after therapy, and 16-point epicardial electropotential mapping (EEPM) was used to evaluate ventricular arrhythmogenicity under isoproterenol stress. Cardiac functioning was assessed by echocardiography. Both transplantation groups showed therapeutic benefit over sham therapy. However, VPCs were more frequent in the Injection group on day 1 and day 14 after therapy than in animals receiving epicardial or sham therapy (p < 0.05 and p < 0.01, respectively). EEPM under isoproterenol stress showed macroreentry at the infarct border area, leading to ventricular tachycardias in the Injection group, but not in the myoblast sheet- or sham-treated groups (p = 0.045). Both transplantation types modified the myocardial cytokine expression profile. In animals receiving epicardial myoblast therapy, selective reductions in the expressions of interferon gamma, interleukin (IL)-1β and IL12 were observed, accompanied by reduced infiltration of inflammatory CD11b- and CD68-positive leukocytes, compared with animals receiving myoblasts as intramyocardial injections. Intramyocardial myoblast delivery was associated with enhanced inflammatory and immunomodulatory reactivity and increased frequency of VPCs. In comparison to intramyocardial injection, the epicardial route may serve as the preferred method of skeletal myoblast transplantation to treat heart failure.  相似文献   
83.
84.
N,N'-dicyclohexylcarbodiimide (DCCD) was earlier reported to have stimulatory effects on mitochondrial respiration and to induce mitochondrial swelling, when it was added to mitochondrial suspensions. These data seem to imply that DCCD caused the mitochondrial permeability transition (PT), but this possibility had never been investigated. In the present study, effects of DCCD on the mitochondrial structure and function were studied in detail. DCCD was found to induce mitochondrial PT in a cyclosporine A-insensitive manner. Electron microscopic analysis also supported the induction of the mitochondrial PT by DCCD. However, different from many other PT inducers, DCCD failed to cause massive release of mitochondrial cytochrome c. To understand the relationship between the induction of mitochondrial PT and the release of mitochondrial cytochrome c, we compared the actions of DCCD on mitochondrial structure and function with those of Ca2+, known as an ordinary PT inducer. As a result, two parameters considered to be critical for controlling the release of mitochondrial cytochrome c on the induction of PT were mitochondrial volume and the velocity of mitochondrial oxygen consumption.  相似文献   
85.
Oxidative stress is known to be involved in growth control of vascular smooth muscle cells (VSMCs). We and others have demonstrated that angiotensin II (Ang II) has an important role in vascular remodeling. Several reports suggested that VSMC growth induced by Ang II was elicited by oxidative stress. Gax, growth arrest-specific homeobox is a homeobox gene expressed in the cardiovascular system. Over expression of Gax is demonstrated to inhibit VSMC growth. We previously reported that Ang II down-regulated Gax expression. To address the regulatory mechanism of Gax, we investigated the significance of oxidative stress in Ang II-induced suppression of Gax expression. We further examined the involvement of mitogen-activated protein kinases (MAPKs), which is crucial for cell growth and has shown to be activated by oxidative stress, on the regulation of Gax expression by Ang II. Ang II markedly augmented intracellular H2O2 production which was decreased by pretreatment with N-acetylcystein (NAC), an anti-oxidant. Ang II and H2O2 decreased Gax expression dose-dependently and these effects were blocked by administration of both NAC and pyrrolidine dithiocarbamate (PDTC), another anti-oxidant. Ang II and H2O2 induced marked activation of extracellular signal-responsive kinase1/2 (ERK1/2), which was blocked by NAC. Ang II and H2O2 also activated p38MAPK, and they were blocked by pre-treatment with NAC. However, the level of activated p38MAPK was quite low in comparison with ERK1/2. Ang II- or H2O2 -induced Gax down-regulation was significantly inhibited by PD98059, an ERK1/2 inhibitor but not SB203580, a p38MAPK inhibitor. The present results demonstrated the significance of regulation of Gax expression by redox-sensitive ERK1/2 activation.  相似文献   
86.
Recent studies have suggested that 5'AMP-activated protein kinase (AMPK) is activated in response to metabolic stresses, such as contraction, hypoxia, and the inhibition of oxidative phosphorylation, which leads to insulin-independent glucose transport in skeletal muscle. In the present study, we hypothesized that acute oxidative stress increases the rate of glucose transport via an AMPK-mediated mechanism. When rat epitrochlearis muscles were isolated and incubated in vitro in Krebs buffer containing the oxidative agent H(2)O(2), AMPKalpha1 activity increased in a time- and dose-dependent manner, whereas AMPKalpha2 activity remained unchanged. The activation of AMPKalpha1 was associated with phosphorylation of AMPK Thr(172), suggesting that an upstream kinase is involved in the activation process. H(2)O(2)-induced AMPKalpha1 activation was blocked in the presence of the antioxidant N-acetyl-l-cysteine (NAC), and H(2)O(2) significantly increased the ratio of oxidized glutathione to glutathione (GSSG/GSH) concentrations, a sensitive marker of oxidative stress. H(2)O(2) did not cause an increase in the conventional parameters of AMPK activation, such as AMP and AMP/ATP. H(2)O(2) increased 3-O-methyl-d-glucose transport, and this increase was partially, but significantly, blocked in the presence of NAC. Results were similar when the muscles were incubated in a superoxide-generating system using hypoxanthine and xanthine oxidase. Taken together, our data suggest that acute oxidative stress activates AMPKalpha1 in skeletal muscle via an AMP-independent mechanism and leads to an increase in the rate of glucose transport, at least in part, via an AMPKalpha1-mediated mechanism.  相似文献   
87.
The alteration of glycosyltransferase expression and the subsequent changes in oligosaccharide structures are reported in several diseases. The analysis of glycan structural alteration in glycoproteins is becoming increasingly important in the discovery of therapies and diagnostic markers. In this study, we propose a strategy for glycomic/glycoproteomic analysis based on oligosaccharide profiling by LC/MS followed by proteomic approaches, including 2-DE and 2-D lectin blot. As a model of aberrant cells, we used Chinese hamster ovary cells transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the addition of a bisecting N-acetylglucosamine (GlcNAc) to beta-mannose of the mannosyl core of N-linked oligosaccharides. LC/MS equipped with a graphitized carbon column (GCC) enabled us to elucidate the structural alteration induced by the GnT-III expression. Using 2-D lectin blot followed by LC/MS/MS, the protein carrying an extra N-acetylhexosamine in cells transfected with GnT-III was successfully identified as integrin alpha3. Thus, oligosaccharide profiling by GCC-LC/MS followed by proteomic methods can be a powerful tool for glycomic/glycoproteomic analysis.  相似文献   
88.
Environmental DNA (eDNA) analysis is an innovative tool for determining the distribution or abundance of aquatic macroorganisms. However, because eDNA degrades rapidly in water, long delays between sampling and analysis may hinder eDNA quantification. In the present study, we developed a portable filtration system that enables on-site (and on-the-road) filtration of water samples. Degradation rates of eDNA within 6 h were compared using water from an outdoor pond that was subjected to (1) on-site filtration, (2) transportation of water on ice, and (3) transportation of water at ambient temperature. Groups 2 and 3 were filtered in the laboratory 6 h after sampling. The concentration of eDNA was determined as the copy number of the mitochondrial cytochrome b gene of two fish species using real-time polymerase chain reaction. The portable filtration system offers the following benefits: (1) the eDNA concentration is preserved as is at the time of sampling, permitting higher accuracy of eDNA quantification, (2) use of a disposable sealed plastic bag reduces the risk of contamination and ensures on-the-road filtration, (3) time is saved because filtration can be accomplished when driving between sampling sites.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号